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1 Geometric growth

In the simplest model, suppose that every infected person meets m people per day (on
average) and each such meeting yields a virus transmission with probability p. Moreover,
suppose every infected person recovers (or is otherwise removed from the infectious set) with
probability α each day. In a population of size N , let

It = {The number of infected individuals on day t}

Then ignoring random fluctuations and denoting β = pm,

It+1 = It + βIt − αIt = It(1 + γ) (1)

where γ = β − α.
Despite its extreme simplicity, this formula often represents initial growth of epidemics

quite well. The factor 1 + γ is often denoted r0. If γ > 0 the epidemic grows exponentially,
while if γ < 0 it decays.

2 Heterogeneous populations

Suppose we consider two communities. In the first the contagion has spread widely and is
now shrinking due to effective mitigation (e.g. lockdown), with I0 = 104, It+1 = 0.9 · It.
In the second community, the contagion is much smaller but growing rapidly: I0 = 10,
It+1 = 2It.

If these two communities are considered together, the situation may look rosy in the
first few days, but can get much worse later. A plot with these parameters can be found in
Figure 2; note the total number of people infected decreases in the first six days but starts
increasing afterwards.

A more complex situation arises when multiple types of individuals interact. For a concrete
example, suppose that a fraction θ of the population are cashiers and the rest are customers.
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Figure 1: The X axis denotes the time and the Y axis the number of people infected each day,
where red shows the people in the first community, blue the people in the second community,
and black the sum.

Every cashier interacts, on average, with m1 customers and with one other cashier per day.
Every customer interacts, on average, with m2 cashiers and one other customer per day.

Naturally, m1 > 1 > m2. Moreover, counting the expected number of customer-cashier
interactions per day shows that

θm1 = (1− θ)m2 (2)

Each interaction between an infected person and a susceptible one yields transmission
with probability p. For specific values, suppose that

θ = 1/161,m1 = 40,m2 = 1/4, and p = 1/10, (3)

so (2) holds. We also assume that every infected person is removed (recovered or quarantined)
with probability α (say with α = 1/5).

Denote by It the number of infected customers and by Jt the number of infected cashiers.
Suppose initially that I0 = 100 and J0 = 0. The next plot shows the numbers It and Jt over
a period of 10 days.

In the early phases of the epidemic, the number of susceptibles hardly changes. So on
average,

It+1 = It + p ·
(
It +m1Jt

)
− αIt

Jt+1 = Jt + p ·
(
Jt +m2It

)
− αJt (4)

How does this contagion spread? Consider the numerical example in (3), where α = 1/5.
During the five days (on average) that a customer is contagious, they will interact (on
average) with 25/4 people and infect in expectation 25p/4 = 5/8 people. For a cashier, the
corresponding number is 101/2.
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Figure 2: The X axis denotes the time and the Y axis the number of people infected each
day, where red shows the number of infected customers (It) and blue the number of infected
cashiers (Jt).

Figure 3: The X axis denotes the time and the Y axis the risk in the early stage of the
epidemic for customers (in red) and for cashiers (in green).

Since cashiers comprise only θ = 1/401 of the population, naive averaging would yield
that the expected number of people an infected person would infect is

400

401
· 5

8
+

1

401
· 101

2
< 0.75,

which suggests the contagion is shrinking.

However, this heuristic is faulty. Rewriting (4) in matrix form, we have(
It+1

Jt+1

)
= A

(
It
Jt

)
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where

A =

(
9/10 10
1/40 9/10

)
(5)

We deduce that (
It
Jt

)
= At

(
I0
J0

)
To compute the powers of At we diagonalize A. First find eigenvalues and eigenvectors by
solving Av = λv, that is 

9v1
10

+ 10v2 = λv1

v1
40

+ 9v2
10

= λv2

Equivalently, 
10v2 =

(
λ− 9

10

)
v1

v1
40

= (λ− 9
10

)v2

Multiplying these equations gives that 1/4 = (λ− 9/10)2, so λ ∈ {7/5, 2/5}.

For λ = 7/5 we get v =

(
20
1

)
; for λ̃ = 2/5, we get ṽ =

(
−20

1

)
.

Represent (
I0
J0

)
=

(
100
0

)
=

5

2
(v − ṽ)

Thus (
It
Jt

)
=

5

2
At(v − ṽ) =

5

2

[(7

5

)t

v −
(

2

5

)t

ṽ
]

(6)

The first summand grows exponentially in t, while the second shrinks. So the infection grows
with growth factor 7/5.

3 Introducing the SIR model

In a population of size N , write

St = {The number of susceptible individuals on day t}
It = {The number of infected individuals on day t}
Rt = {The number of removed individuals on day t}

Here, removed can indicate recovery or showing symptoms that lead to quarantine, so an
individual cannot infect others.
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Suppose each infected person meets m people each day, on average, and a fraction p
of these meetings result in transmission of the infection. Moreover, each infected person is
removed with probability α each day. Then, with β = mp, we have

St+1 = St − β
St

N
It

It+1 = It + β
St

N
It − αIt

Rt+1 = Rt + αIt (7)

This is the celebrated SIR model [1].

In the early stages of the infection, St/N is close to 1, so equation (7) for It+1 is close to
the geometric sequence It+1 = (1 + γ)It, where γ = β − α.
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